Part Number Hot Search : 
M56730 AOD446 00HSTS 603K3 W5100 MP5006W LT4851 STV8225
Product Description
Full Text Search
 

To Download TB6066FNG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TB6066FNG
TOSHIBA BiCMOS Linear Integrated Circuit Silicon Monolithic
TB6066FNG
Shock Sensor IC
TB6066FNG detects an existence of external shock through the shock sensor and output Low-level signal at 7 pin. It has so excellent characteristic in S/N ratio that user can use Analog signal for mechanical control systems, like servo control.
Features
* * TB6066FNG operates from 2.7 to 5.5 V DC single power supply voltage. Signal from the shock sensor is amplified according to setting gain, and is detected through the internal window comparator. Input terminal of sensor signal is designed high impedance. Differential input impedance = 100 M (typ.) * * * * Three Operatinal-Amplifier is built in for design flexibility. (*Note 1) Sensitivity of shock detection can be adjusted by external devices. Small package: SSOP16-P-225-0.65B (0.65 mm pitch) Excellent S/N ratio: Improved 10dB compared with our TA6038FN/FNG *Note 1: LPF (low pass filter) circuitry is not bulit in. User needs to make some filter with one operational-amplifier to cancel the signal of resonant frequency of piezo sensor
Weight: 0.07 g (typ.)
*
Block Diagram
C1 16 15 1V Diff Amp x5 1.2 V OP3 AMP Comparator 4 5 6 7 "L" output when shock detected. OP2 AMP OP1 AMP 9 VCC 14 13 12 11 10
50 M
0.63 V 50 M 1 C2 2 3 Guard C3 R1
8 GND
R2 C4
1
2003-05-14
TB6066FNG
Pin Function
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pin Name SIA SOA VR A3I A3O CMI CMO GND VCC A1O A1I A2O A2I DO SOB SIB Function Connection terminal of shock sensor Amp (A) output terminal Guard terminal. Reference voltage to protect (1, 16 pin) OP-AMP (3) input terminal OP-AMP (3) output terminal Comparator Input terminal Comparator Output terminal (output = "L" when shock is detected.) Ground terminal Power supply voltage OP-AMP (1) output terminal OP-AMP (1) input terminal OP-AMP (2) output terminal OP-AMP (2) input terminal Differential-Amp output terminal Amp (B) output terminal Connection terminal of shock sensor
Pin Connection (top view)
SIA 1 SOA 2 VR 3 A3I 4 A3O 5 CMI 6 CMO 7 GND 8 16 SIB 15 SOB 14 DO 13 A2I 12 A2O 11 A1I 10 A1O 9 VCC
2
2003-05-14
TB6066FNG
Maximum Ratings (Ta = 25C)
Characteristics Power supply voltage Input voltage Power dissipation Storage temperature Symbol VCC VIN PD Tstg Rating 6 -0.3 to VCC + 0.3 300 -55 to 150 Unit V V mW C
Recommend Operating Condition
Characteristics Power supply voltage Operating temperature Symbol VCC Topr Rating 2.7 to 5.5 -25 to 85 Unit V C
Note: The IC may be destroyed due to short circuit between adjacent pins, incorrect orientation of device's mounting, connecting positive and negative power supply pins wrong way round, air contamination fault, or fault by improper grounding.
3
2003-05-14
TB6066FNG
Electrical Characteristics (1) --- Guaranteed data
(unless otherwise specified, VCC = 3.3 V, Ta = 25C)
Characteristics Supply voltage Supply current Symbol VCC ICC Test Circuit 1 VCC = 3.3 V VCC = 5.0 V Test Condition Min 2.7 Typ. 3.3 3.5 3.6 Max 5.5 5 5 Unit V mA
(DIFF-AMP)
Characteristics Gain Output DC voltage Output source current Output sink current Symbol GvBuf VoBuf IBso IBsi Test Circuit 2 3 4 5 Test Condition Connect C = 1000 pF between 1 pin and 2 pin, 15 pin and 16 pin, Voh = VCC - 1 V Vol = 0.3 V Min 13.6 0.7 0.6 70 Typ. 14 1 1.9 150 Max 14.4 1.3 Unit dB V mA A
(OP-AMP1)
Characteristics Input voltage 1 Input current Output voltage range (Low side) Output voltage range (High side) Output source current Output sink current Symbol Vin1 Iin Vol Voh IAso IAsi Test Circuit 6 7 8 9 Test Condition Voh = VCC - 1 V Vol = 0.3 V Min 1.135 0.3 200 100 Typ. 1.2 40 800 200 Max 1.265 100 VCC - 1 Unit V nA V V A A
(OP-AMP2)
Characteristics Input voltage range (Low side) Input voltage range (High side) Input current Output voltage range (Low side) Output voltage range (High side) Output source current Output sink current Symbol Vil Vih Iin Vol Voh IAso IAsi Test Circuit 10 11 12 Test Condition Input voltage 1.0 V Voh = VCC - 1 V Vol = 0.3 V Min 0 -100 0.3 200 100 Typ. 800 200 Max VCC - 1 100 VCC - 1 Unit V V nA V V A A
4
2003-05-14
TB6066FNG
(OP-AMP3)
Characteristics Input voltage 1 Input current Output voltage range (Low side) Output voltage range (High side) Output source current Output sink current Symbol Vin1 Iin Vol Voh IAso IAsi Test Circuit 13 14 15 16 Test Condition Voh = VCC - 1 V Vol = 0.3 V Min 1.135 0.3 200 100 Typ. 1.2 40 800 200 Max 1.265 100 VCC - 1 Unit V nA V V A A
(Window-Comparator)
Characteristics Output pull-up resistance Output sink current Symbol RWu IWsi Test Circuit 17 18 Vol = 0.3 V Test Condition Min 21 1.0 Typ. 27 3.0 Max 33 Unit k mA
(Guard Terminal)
Characteristics Reference Voltage Symbol Vref Test Circuit Test Condition Min 0.50 Typ. 0.63 Max 0.80 Unit V
Note: This terminal should be used to make guard ring for (1, 16 pin). Please don't use for any other usage.
5
2003-05-14
TB6066FNG
Electrical Characteristics (2) --- Reference data for application (Note)
(DIFF-AMP)
Characteristics Input impedance Symbol Zin Test Circuit Test Condition Min 30 Typ. 100 Max Unit M
(OP-AMP1/2/3)
Characteristics Cut-off frequency Openloop gain Offset voltage (OP-AMP1/3) Offset voltage (OP-AMP2) Symbol fT Gvo Voff Voff Test Circuit Test Condition Min 500 80 -5 -15 Typ. 90 0 0 Max 5 15 Unit kHz dB mV mV
(Window-Comparator)
Characteristics Trip voltage 1 Symbol Vtrp1 Test Circuit Test Condition Min Vin1 0.37 Typ. Vin1 0.4 Max Vin1 0.43 Unit V
Note: Toshiba can not test these tables of characteristics for all samples. Therefore Toshiba does not guarantee the data. Please use the data as reference data for customer's application.
6
2003-05-14
TB6066FNG
Application Note
1.6 V 15 C4 R2 50 M 50 M 1 C2 2 1.2 V 0.8 V x5 14 C3 R1 4
C1 16 Shock sensor Qs (pC/G)
5
6
7
Figure 1
The Configuration of G-Force Sensor Amplifier
Figure 1 shows the configuration of G-Force sensor amplifier. The shock sensor is connected between the pins 1 and 16. < How to output 0 or 1 from the pin 7 to detect whether there is a shock or not. > - Using a sensor with the sensitivity Qs (pC/G) to detect the shock g (G). - a. Setting gain: C1 = C2 (pF), R1 (k), R2 (k)
Qs x g R2 x2x5x = 0.4 (V) C1 R1 C1 = C2 = Qs x g R2 x 0.04 R1
Example: Detecting 5 (G)-shock using a sensor with Qs = 0.34 (pC/G), R1 = 10 (k), R2 = 100 (k).
C1 = C2 = 0.34 x 5 100 x = 425 (pF) 0.04 10
b. Setting the frequency (Hz) of HPF: Setting C3 (F), R1 (k)
fc (Hz) = 1 x 103 2 x x R1 x C3
Example: Setting the frequency to 20 Hz with R1 = 10 (k).
C3 =
1 x 103 = 0.8 (F) 2 x x 10 x 20
c. Setting the frequency (kHz) of LPF: Setting C4 (pF), R2 (k) fc (kHz) = 1 x 106 2 x x R2 x C4
Example: Setting the frequency to 5 kHz with R2 = 100 (k).
C4 =
1 x 106 = 318 (pF) 2 x x 100 x 5
< How to output the voltage according to the shock through the pin 5. > - Using a sensor with the sensitivity Qs (pC/G), and assuming the shock sensitivity of the system is Vsystem (mV/G). - a. Setting gain: C1 = C2 (pF), R1 (k), R2 (k)
Qs R2 x2x5x = Vsystem x 103 (mV/G) C1 R1
Example: Designing the system with 200 (mV/G) by using a sensor that Qs = 0.34 (pC/G), R1 = 10 (k), R2 = 100 (k). C1 = C2 = 0.34 100 x x 10 4 = 170 (pF) 200 10
C1 = C2 =
Qs R2 x x 10 4 (pF) Vsystem R1
7
2003-05-14
TB6066FNG
Equivalent Circuit
VCC 100 VCC 100 14 DO 10 A1O VCC 100 12 A2O
VCC 100
5 A3O
0.8 V
1.6 V
6 CMI
27 k
7 CMO
8
2003-05-14
TB6066FNG
Test Circuit
(1) Supply current: ICC
2 M
1 2 3
SIA SOA VR A3I A3O CMI CMO GND
SIB SOB DO A2I A2O A1I A1O VCC
16 15 14 13 12 11 10 9
2 M
5 k
4 5 6 7 8
5 k
A 3.3 V
(2)
DIFF-AMP Gain: GvBuf Step 1
1 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 M1
Gain = (M2-M1)/(0.63-0.47) Step 2
1 2 M 0.63 V 2 M 0.63 V 2 M 2 M 2 3 5 k 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 M2 V 2 M 0.47 V 2 M
2 M 0.63 V 2 M
2 3
5 k 4 5 6 7 8
V
3.3 V
(3)
DIFF-AMP Output DC voltage: VoBuf
1 2 3 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 V 1000 pF
1000 pF
5 k
4 5 6 7 8
3.3 V
9
2003-05-14
3.3 V
TB6066FNG
(4) DIFF-AMP Output source current: IBso
1 2 M 2 M 2 3 5 k 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 A 2.3 V 5 k 2 M 2 M
(5)
DIFF-AMP Output sink current: IBsi
1 2 3 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 A 0.3 V 3.3 V IM A 0.6 V 3.3 V 16 15 14 13 12 11 10 9 A 0.3 V 3.3 V 1.4 V 2 M 2 M
(6)
OP-AMP1 Input voltage 1: Vin1
1 2 3 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 5 k V 3.3 V
3.3 V
(7)
OP-AMP1 Input current: Iin
1 2 3 5 k 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9
5 k
4 5 6 7 8
Spec (Iin) = IM/2
(8)
OP-AMP1 Output source current: IAso
1 2 3 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 A 2.3 V 3.3 V 1.0 V
(9)
OP-AMP1 Output sink current: IAsi
1 2 3 5 k 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC
5 k
4 5 6 7 8
10
2003-05-14
TB6066FNG
(10) OP-AMP2 Input current: Iin
1 2 3 5 k 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND Spec (Iin) = IM SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 IM A 1.0 V 3.3 V
(11) OP-AMP2 Output source current: IAso
1 2 3 5 k 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 A 2.3 V 3.3 V
(12) OP-AMP2 Output sink current: IAsi
1 2 3 5 k 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9 A 0.3 V 3.3 V 3.3 V 0V
(13) OP-AMP3 Input voltage 1: Vin1
1 2 3 4 5 k V 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9
3.3 V
(14) OP-AMP3 Input current: Iin
1 2 3 IM 4 5 A 0.6 V 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9
3.3 V
Spec (Iin) = IM/2
11
2003-05-14
TB6066FNG
(15) OP-AMP3 Output source current: IAso
1 2 3 4 5 A 1.0 V 2.3 V 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 1.4 V 10 9 A 0.3 V
(16) OP-AMP3 Output sink current: IAsi
1 2 3 4 5 6 7 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9
3.3 V
(17) Window comparator Output pull-up resistance: RWu
1 2 3 4 5 6 7 M3 A 1.2 V 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9
(18) Window comparator Output sink current: Iwsi
1 2 3 4 5 6 7 A 0.7 V 3.3 V 0.3 V 8 SIA SOA VR A3I A3O CMI CMO GND SIB SOB DO A2I A2O A1I A1O VCC 16 15 14 13 12 11 10 9
RWu = 3.3/M3
12
2003-05-14
3.3 V
3.3 V
TB6066FNG
Package Dimensions
Weight: 0.07 g (typ.)
13
2003-05-14
TB6066FNG
RESTRICTIONS ON PRODUCT USE
000707EAA
* TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. * The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. * The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. * The information contained herein is subject to change without notice.
14
2003-05-14


▲Up To Search▲   

 
Price & Availability of TB6066FNG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X